Center \#1 - Evaluate the expression when $\mathrm{x}=20$ and $\mathrm{y}=4$

1. $x \div 5$
2. $x y-8 y$
3. $x^{2}-y^{3}$

Factor the expression using the GCF
4. $3 x+12$
5. $18 m-30$

Center \#2 - Write the phrase as an expression. Then evaluate when $a=5$ and $b=8$. 1. The sum of 7 and the product of a number a and 12
2. b fewer than the number 11
3. The product of 4 and the difference of 9 and the number a.
4. A number 17 decreased by b
5. Your basketball team scored 4 fewer than twice as many points as the other team. Write an expression using the variable p for points. How many points did your team score if the other team scored 24 points?

Center \#3 - Simplify and state the property you used for each step.

1. $10+(2+y)$
2
$(21+b)+1$
2. $3(7 x)+0$
3. $\quad 5.3(w+1.2)$
4. $36 \cdot r \cdot 1$
5. $7+3 x+4$

Center \#4 - Simplify the expression.

1. $5 a-15+4 a$
2.

$3(x+4 y)+2 x-7 y$
3. $24+(m-7)$

Center \#5 - Identify the terms, coefficients, and constants.

1. $5 m+3$	2. $3 a+b$	3. $4 x^{2}+8 y+3$
Terms:	Terms:	Terms.

Coefficients:
Coefficients:
Coefficients:

Constants:
Constants:
Constants:

Center \#6
Tickets to the play cost $\$ 8$ for adults and $\$ 5$ for kids. Write an expression for the total cost of x adults and y kids tickets. Then use the expression to find the total cost if 12 adults and 7 kids attend the play.

Each side of a triangle has a length of $24 y$ centimeters. Draw what this looks like then write an expression for the perimeter of the triangle (in centimeters).

Center \#1 - Evaluate the expression when $\mathrm{x}=20$ and $\mathrm{y}=4$

1. $x \div 5$
2. $x y-8 y$
3. $x^{2}-y^{3}$

$$
20 \div 5=4
$$

$$
20.4-8.4
$$

$$
80-32=48
$$

Center \#2 - Write the phrase as an expression. Then evaluate when $a=5$ and $b=8$.

1. The sum of 7 and the product of a number a and 12

$$
\begin{aligned}
& 7+12 a \rightarrow 7+12 \cdot 5 \\
& 7+60=67
\end{aligned}
$$

2. b fewer than the number 11

$$
11-b \quad 11-8=3
$$

3. The product of 4 and the difference of 9 and the number a.

$$
\begin{array}{r}
4(9-a) \\
4(9-5)=16
\end{array}
$$

4. A number 17 decreased by b

$$
17-b \quad 17-8=9
$$

5. Your basketball team scored 4 fewer than twice as many points as the other team. Write an expression using the variable p for points. How many points did your team score if the other team scored 24 points?

$$
\begin{aligned}
2 p-4 \rightarrow 2 & (24)-4 \\
& 48-4=44 \text { pts. }
\end{aligned}
$$

Center \#3 - Simplify and state the property you used for each step.

$$
\begin{gathered}
10+(2+y) \\
(10+2)+y \text { assoc. } \\
12+y
\end{gathered}
$$

$$
\text { 2. } \quad(21+b)+1
$$

3. $3(7 x)+0$

$$
\begin{aligned}
& (21+b)+1 \\
& b+(21+1) \text { comm } \\
& b+22
\end{aligned}
$$

4. $\quad 5.3(w+1.2)$
5. $36 \cdot r \cdot 1$
6. $7+3 x+4$
$5.3 w+6.36$ Distributive
36.1 . r comm . $7+4+3 x$ comm 36 milt prop $11+3 x$
or identity property

Center \#4 - Simplify the expression.
1.

$$
\underbrace{5 a-15+4 a}_{9 a-15} \underbrace{3 x+12 y+2 x-7 y}_{5 x+5 y}
$$

3. $24+(m-7)$
$24+m-7$
$24-7+m$
$17+m$

Center \#5 - Identify the terms, coefficients, and constants.

1. $5 m+3$
2. $3 a+b$

Terms: $5 \mathrm{~m}, 3$
Terms: $3 a, b$
Coefficients: 5
Coefficients:
3,1
constants: 3
Constants: none
3. $4 x^{2}+8 y+3$

Terms: $4 x^{2}, 8 y, 3$
Coefficients: 4,8
Constants: 3

Center \#6
Tickets to the play cost $\$ 8$ for adults and $\$ 5$ for kids. Write an expression for the total cost of x adults and y kids tickets. Then use the expression to find the total cost if 12 adults and 7 kids attend the play.

$$
\begin{aligned}
& 8 x+5 y \\
& 8 \cdot 12+5 \cdot 7 \\
& 96+35=\$ 131
\end{aligned}
$$

Each side of a triangle has a length of $24 y$ centimeters. Draw what this looks like then write an expression for the perimeter of the triangle (in centimeters).

$$
\begin{gathered}
24 y+24 y+24 y \\
72 y \mathrm{~cm} .
\end{gathered}
$$

