Center \#1 - Simplify the expressions.

1) $2 a-7+8 a^{2}-4+3 a$
2) $(2 x-6)-(x-3)$
3) $\frac{2}{5}(d-10)+\frac{2}{3}(d+6)$
4) $(4 a-3)-3(5-2 a)$

Center \#2 - Write each word sentence as an equation or inequality and solve.

1. The Coronado bridge is about 2700 meters long. The Coronado bridge is four-fifths as long as the Golden Gate bridge. Write and solve an equation to find the length of the Golden Gate bridge.
2. You want to use a square section of your yard for a garden. You have at most 52 feet of fencing for the garden. Write and solve an inequality to represent the possible lengths of the side of the garden.

Center \#3 - Factor out the coefficient of the variable.

1) $2 b+8$
2) $-5 q+20$
3) $\frac{2}{3} a+\frac{1}{2}$
4) $-0.5 r-6$

Center \#4 - Solve the equation.

1) $-2+j=-22$
2) $\frac{w}{6}+\frac{5}{8}=-1 \frac{3}{8}$
3) $3(3 w-4)=-20$
4) $5.4 x=-32.4$

Center \#5 - Solve the inequality and graph the solution.

1) $-24 \geq 3 b-6$
2. $21>\frac{2 x}{7}$
3. $\frac{3}{11} k>15$

Center \#6

Write an expression in simplest form that represents the area of the white space.

Center \#1 - Simplify the expressions.

1) $2 a-7+8 a^{2}-4+3 a$

$$
\text { 3) }(2 x-6)-(x-3)
$$

$$
8 a^{2}+5 a-11
$$

or

$$
8 a^{2}+5 a+-11
$$

Center \#2 - Write each word sentence as an equation or inequality and solve.

1. The Coronado bridge is about 2700 meters long. The Coronado bridge is four-fifths as long as the Golden Gate bridge. Write and solve an equation to find the length of the Golden Gate bridge.

$$
\begin{aligned}
\frac{5}{4} \cdot 2760^{675} & =\frac{4}{8} \mathrm{~g} \cdot \frac{8}{4} \\
g & =3375 \text { maters }
\end{aligned}
$$

5) $(4 a-3)-3\left(\begin{array}{l}5-2 a) \\ a\end{array}\right.$
$4 a-3-15+6 a$
$10 a-18$ or $10 a+-18$

Center \#3 - Factor out the coefficient of the variable.

1) $2 b+8$

$$
\begin{array}{r}
2 \cdot b+2 \cdot 4 \\
2(b+4)
\end{array}
$$

2) $-5 q+20$

$$
\begin{aligned}
& -5 \cdot q+-5 \cdot-4 \\
& -5(q+-4)
\end{aligned}
$$

3) $\frac{2}{3} a+\frac{1}{2} \quad \frac{k}{3} \cdot \underline{x}=\frac{1}{2} \cdot \frac{3}{2}$
4) $-0.5 r-6$

$$
\begin{aligned}
& \frac{2}{3} \cdot a+\frac{2}{3} \cdot \frac{3}{4} x=\frac{3}{4} \\
& \frac{2}{3}\left(a+\frac{3}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -0.5 \cdot r--0.5 \cdot-12 \\
& -0.5(r--12) \\
& -0.5(r+12)
\end{aligned}
$$

Center \#4 - Solve the equation.
1)

$$
\begin{array}{r}
-z^{2}+j=-22 \\
+2+2 \\
\hline j=-20
\end{array}
$$

3)

$$
\begin{aligned}
& \underbrace{3(3 w-4)}=-20 \\
& 9 w-12=-20 \\
&+\frac{12}{q w}=-\frac{8}{9} \\
& \frac{9}{9}
\end{aligned}
$$

2)

$$
\begin{array}{r}
\frac{\frac{w}{6}+\frac{5}{6}=-1 \frac{3}{8}}{-\frac{5}{8}-\frac{5}{8}} \\
\frac{w}{6}=-2 \cdot 6 \\
w=-12
\end{array}
$$

4) $\frac{5.4 x}{5.4}=\frac{-32.4}{5.4}$

$$
x=-6
$$

Center \#5 - Solve the inequality and graph the solution.

1) $-24 \geq 3 b-6$

$$
\begin{aligned}
& \frac{27}{2} \cdot 21>\frac{x x}{x} \cdot \frac{x}{x} \\
& \frac{147}{2}>x
\end{aligned}
$$

$$
73.5>x
$$

$$
\begin{aligned}
& k>55 \\
& \stackrel{\substack{24}}{\stackrel{1}{55} \xrightarrow[56]{\longrightarrow}}
\end{aligned}
$$

Center \#6

Write an expression in simplest form that represents the area of the white space.
Bis rectangle $(11+4) \times(10+x)$ $15(10+x)$
smell

$$
\begin{gathered}
10 \times 11=1150+15 x \\
15 x+150-110 \\
15 x+40
\end{gathered}
$$

