Center #1 – Simplify the expressions.

1)
$$2a-7+8a^2-4+3a$$

3)
$$(2x-6)-(x-3)$$

4)
$$\frac{2}{5}(d-10) + \frac{2}{3}(d+6)$$

5)
$$(4a-3)-3(5-2a)$$

Center #2 – Write each word sentence as an equation or inequality and solve.

- 1. The Coronado bridge is about 2700 meters long. The Coronado bridge is four-fifths as long as the Golden Gate bridge. Write and solve an equation to find the length of the Golden Gate bridge.
- 2. You want to use a square section of your yard for a garden. You have at most 52 feet of fencing for the garden. Write and solve an inequality to represent the possible lengths of the side of the garden.

Center #3 – Factor out the coefficient of the variable.

1)
$$2b + 8$$

$$-5q + 20$$

3)
$$\frac{2}{3}a + \frac{1}{2}$$

4)
$$-0.5r - 6$$

Center #4 – Solve the equation.

1)
$$-2 + j = -22$$

$$\frac{w}{6} + \frac{5}{8} = -1\frac{3}{8}$$

3)
$$3(3w-4) = -20$$

4)
$$5.4x = -32.4$$

Center #5 – Solve the inequality and graph the solution.

1)
$$-24 \ge 3b - 6$$

2.
$$21 > \frac{2x}{7}$$

3.
$$\frac{3}{11}k > 15$$

Center #6

Write an expression in simplest form that represents the area of the white space.

1)
$$2a-7+8a^2-4+3a$$

$$8a^2 + 5a - 11$$
or
 $8a^2 + 5a + -11$

3)
$$(2x-6)-(x-3)$$

 $2x-6-x+3$
 $x-3$ or $x+-3$

4)
$$\frac{2}{5}(d-10) + \frac{2}{3}(d+6)$$

 $\frac{2}{5}d - 4 + \frac{2}{3}d + 4$
 $\frac{6}{15}d + \frac{16}{15}d$
 $\frac{16}{15}d = 1\frac{1}{15}d$

5)
$$(4a-3)-3(5-2a)$$

 $4a-3-15+6a$
 $10a-18 \circ r \cdot 10a+-18$

Center #2 - Write each word sentence as an equation or inequality and solve.

1. The Coronado bridge is about 2700 meters long. The Coronado bridge is four-fifths as long as the Golden Gate bridge. Write and solve an equation to find the length of the Golden Gate bridge.

$$\frac{5.2760}{x} = \frac{x}{8}g = \frac{8}{4}$$
 $g = 3375$ maters

2. You want to use a square section of your yard for a garden. You have at most 52 feet of fencing for the garden. Write and solve an inequality to represent the possible lengths of the side of the garden.

115 p348 #11-19 what 20 p592 #1-9 odd, 10-16 all, 18-20 all

Center #3 – Factor out the coefficient of the variable.

1)
$$2b + 8$$

3)
$$\frac{2}{3}a + \frac{1}{2}$$
 $\frac{2}{2}$ $\frac{2}{3}$ $\frac{2}{3}$

4)
$$-0.5r-6$$

$$-0.5 \cdot r - -0.5 \cdot -12$$

$$-0.5 (r - -12)$$

$$-0.5 (r + 12)$$

Center #4 - Solve the equation.

1)
$$-2+j = -22$$

 $+2$ $+2$
 $j = -20$

2)
$$\frac{w}{6} + \frac{5}{8} = -1\frac{3}{8}$$

 $-\frac{5}{8} - \frac{8}{8}$
 $\frac{1}{8} - \frac{1}{8}$
 $\frac{1}{8} - \frac{1}{8}$
 $\frac{1}{8} - \frac{1}{8}$
 $\frac{1}{8} - \frac{1}{8}$

3)
$$3(3w-4) = -20$$

 $9w - 1/2 = -20$
 $+1/2 + 1/2$
 $9w = -8$
 $1/2 = -8$
 $1/2 = -8$
 $1/2 = -8$

4)
$$\frac{5.4x = -32.4}{5.4}$$

 $\times = -6$

Center #5 – Solve the inequality and graph the solution.

1)
$$-24 \ge 3b - 6/$$
 $+6$
 $+6$
 $+6$
 $-18 \ge 3b$
 $-6 \ge 6$
 $-6 \ge 6$

1)
$$-24 \ge 3b - 6/$$
 $+6$
 $+6$
 $+6$
 $+6$
 $-18 \ge 4b$
 $-6 \ge b$
 $-73.55 \ge x$
 $-6 \ge b$
 $-73.55 \ge x$

Center#6

Write an expression in simplest form that represents the area of the white space.

Big rectangle (11+4)× (10+x)
15 (10+x) Small 10×11=110 15×+150-110